
Automating the Area-Delay Trade-off Problem
Haven Skinner

Dept. of Computer Engineering
hskinner@ucsc.edu

Rafael Trapani Possignolo
Dept. of Computer Engineering

rpossign@ucsc.edu

Jose Renau
Dept. of Computer Engineering

renau@ucsc.edu

ABSTRACT
An ongoing challenge in digital architecture design is the problem
of replicating functionality across systemswith different timing be-
havior. Since themaximum clock frequency of a system is based on
the longest path between registers, creating systems with a high
clock frequency requires that architects divide logic betweenmany
pipeline stages, adding additional costs in power and area. This
trade-off makes it difficult to share functionality between similar
architectures which differ only in desired timing behavior. Fluid
Pipelines are a type of latency-insensitive system which can lever-
age latency-insensitive pipeline transformations as part of the syn-
thesis flow to automatically generate designs with identical behav-
ior but different timing attributes. In this paper we take demon-
strate how several four and five stage RISC-V processors can be
transformed into three, two, and one stage processors, and com-
pare those against open-source RISC-V processors with similar fea-
tures.

ACM Reference Format:
Haven Skinner, Rafael Trapani Possignolo, and Jose Renau. 2018. Automat-
ing the Area-Delay Trade-off Problem. In Proceedings of Workshop on Com-
puter Architecture Research with RISC-V (CARRV). ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A trade-off which has remained at the core of digital architecture
design is the one between power/area and clock speed. Creating
a system with a high maximum clock speed requires more hard-
ware, adding costs in power and area. At the code level, this is ac-
complished by dividing the system’s logic between register blocks,
which comes with the unavoidable downside of very closely ty-
ing the functional behavior of the architecture to it’s timing. This
means that unlike in software development, it is much more diffi-
cult to share code between similar projects.

Fluid Pipelines are an alternative, latency-insensitive, design
pattern, where functionality is based only on the order which data
is received, not on its timing. This development model separates
the behavior of the system from the timing. This also provides

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Workshop on Computer Architecture Research with RISC-V (CARRV),
,
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the As-
sociation for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

S
e
n
d
e
r

R
e
ce
iv
e
r

EB

din

Vin

Sin

q

Vout

Sout

Figure 1: FReg are the basic construct blocks of Fluid
Pipelines, they can be viewed as queues of limited size.

a high-level mechanism for manipulating the system’s clock fre-
quency: pipeline transformations [10]. Pipeline transformations al-
low for inserting or removing fluid registers from the design as
part of the compilation flow, without changing the code base. This
is further discussed in Section 2.

In this paper we apply pipeline transformations to several four
and five stage RISC-V processors in order to remove registers,
transforming the system into one with fewer pipeline stages, with-
out changing the behavior. We compare the three, two, and one
stage processors derived through transformations against open-
source RISC-V processors with similar features.

Section 2 discusses fluid pipelines and fluid pipeline transfor-
mations in more detail. Section 3 describes the design of the fluid
pipelined RISC-V processors, showing their internal structure un-
transformed, andwhen several example transformations. Section 4
compares the fluid pipelined RISC-V processors against several
widely used open-source RISC-V processors with similar attributes.
Finally we offer some concluding thoughts and future plans in Sec-
tion 5.

2 FLUID PIPELINES
The clock synchronous pipeline remains the dominant method of
implementing digital architectures for synthesis. In this paradigm,
the system is kept in sync by one or more global clocks. A side
effect of this approach is that the behavior of the system is closely
tied to its timing.

Latency-Insensitive Systems are an alternative where the behav-
ior is solely based on the order that data is received, and not on
the timing. Clock synchronous systems can be automatically trans-
formed into latency-insensitive ones [7–9]; however, exposing the
latency-insensitive backend to the designer provides improved per-
formance and flexibility [10, 11, 13]. Priorwork has also shown that
Fluid Pipelines can be synthesized with with minimal to negligible
costs to timing, area, and power [11, 12].

There are a variety of ways to implement a synthesizable,
latency-insensitive pipeline; Fluid pipelines [10, 11] do so by
replacing the clock synchronous registers used in traditional
pipelines with fluid buffers, depicted in Figure 1. The control sig-
nals, valid and stop manage a simple handshake protocol to signal
when valid data is available and handle back pressure.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Workshop on Computer Architecture Research with RISC-V (CARRV),
,

Haven Skinner, Rafael Trapani Possignolo, and Jose Renau

F1 F2 F1 F2

(a) Retiming

F1 F2 F1 F2

(b) Recycling

Figure 2: Retiming and Recycling can be applied to fluid sys-
tems to improve the clock frequency.

F1 F2 F1 F2

Figure 3: When two stages are collapsed together, registers
between them can be removed. Each arrow represents a
fluid connection, with data, valid, and stop signals.

Developing a latency-insensitive or fluid system places real con-
straints on the designers. For example, in traditional digital design,
it is possible to assume that if a signal happens a given cycle, a few
cycles later something else will happen. For a latency-insensitive
system, however, the designer can not assume any time dependen-
cies. From a high level point of view, the design should function
properly even if any fluid register in the system adds a random
delay before producing output.

Fluid pipelines provide performance improvements over auto-
matically generated latency-insensitive systems by going even fur-
ther and not assuming any particular completion order between
stages. This allows the designer to leverage out-of-order computa-
tion, which can improve overall performance [10].

2.1 Pipeline Transformations
Prior work on Fluid Pipelines has shown that since their function-
ality does not depend on the cycle that events happen, it is possible
to change the number of pipeline stages. This operation is referred
to as ReCycling [6] (Figure 2b). ReCycling is usually performed to
increase the number of pipeline stages, and therefore, increases the
maximum frequency of a circuit [6, 10]. In this paper, we are inter-
ested in reducing the number of pipeline stages, to automatically
synthesize designs with less pipeline stages than present in code.
This can be thought of as ReCycling in reverse, alternatively it can
be described as reducing the latency between two or more stages
to zero.

We model pipeline transformations as an operation done on
pairs of stages, “collapsing” one stage into another. This is depicted
in Figure 3. When this operation is performed, the “forward” con-
nections between the stages are removed, while the “back” connec-
tions remain. Each of the arrows in Figure 3 represent a fluid con-
nection, which includes a data, valid, and stop signal. All of these

F D E W

regfile update

branch-pc

I$ D$

(a) 4-stage Cliff CPU (c4), which optionally in-
cludes a forwarding path, shown with a dotted
line (c4+fwd).

F D E W

regfile update

branch-pc

I$ D$

W2

regfile update (loads)

(b) 5-stage Cliff (c5)

Figure 4: The 4 and 5 stage “Cliff” cores, which implement
the RISC-V 64i instruction set.

connections are maintained after collapsing stages together, ensur-
ing correct functionality, though many may be simplified away
later on in the synthesis flow.

3 CLIFF CPUS
In this paper, we demonstrate how pipeline transformations can
be applied to remove pipeline stages from a design to generate dif-
ferent timing variation of the same architecture, without changing
the codebase. To evaluate this we developed several four and five
stage RISC-V CPUs, which we refer to as “Cliff” cores. Figure 4
shows the cores used for this paper, each of which implement the
RISC-V 64i instruction set. The four stage RISC-V Fluid cores have
the topology: fetch, decode, execute, and write back, the five stage
RISC-V Fluid core breaks write back into two stages.

Each RISC-V core includes instruction and data SRAMs. The
Fluid RISC-V cores were developed with a HDL and compiler de-
signed for creating Fluid architectures [12]. The HDLworks on the
RTL level. The compiler can implement the system in either C++
or Verilog, and can apply pipeline transformations as part of the
compilation flow.

Transformations are applied as a set of mappings, mapping the
name of a new pipeline stage to a list of stages which will be
merged to form it. Figure 5 shows several possible sets of trans-
formations which could be applied to the c4+fwd CPU. These are
guaranteed to maintain functionality as long as the design con-
forms to the fluid pipeline protocol [10–12], and does not contain
any implicit time-latency assumptions.

Table 1 compares the Cliff cores to the open-source RISC-V
CPUs that they are evaluated against. VScale [4] is a 32-bit, 3-stage
CPU. PICORV32 [1] is a 4-stage, also 32-bit. RI5CY [3] is a 4-stage
32-bit core which has additional features such as a prefetch buffer.
Zero-riscy [5] is a smaller 2-stage version of RI5CY.

The automatically Fluid transformed cores keep the same orig-
inal name and add the generated number of pipeline stages. E.g:

Automating the Area-Delay Trade-off Problem

Workshop on Computer Architecture Research with RISC-V (CARRV),
,

F D,E W

regfile update

I$ D$

branch-pc
(a) “D,E” = merge(“D”, “E”)

F,D,E W

regfile update

branch-pc

I$ D$

(b) “F,D,E” = merge(“F”, “D”, “E”)

F,D E,W

regfile update

branch-pc

I$ D$

(c) “F,D” = merge(“F”, “D”)
“E,W” = merge(“E”, “W”)

Figure 5: Since the Cliff cores are fluid pipelined, they can
be transformed, as shown above.

Table 1: Cores used in the evaluation.

Name Fluid Main Characteristics

c4 Yes 4-stage
c4+fwd Yes 4-stage with forwarding
c5 Yes 5-stage
c5+fwd Yes 5-stage with forwarding
c6+fwd Yes 6-stage with forwarding

Zero-riscy No 2-stage [5]
VScale No 3-stage [4]
PICORV32 No 4-stage [1]
RI5CY No 4-stage [3]

c4+fwd 2-stage means that the original c4+fwd Fluid core was au-
tomatically transformed to become a 2 pipeline stage core.

For synthesis, we make sure that all the SRAMs associated for
data and instruction are not included in the synthesis results by
having a similar size and excluding the SRAM blocks from the syn-
thesis itself. When possible we also select configuration parame-
ters to match the Fluid RISC-V cores. For all the cores, we use a
commercial synthesis flow that has topological information dur-
ing synthesis. For each core, we select a target frequency 5% under
the maximum achievable frequency for that given core.

4 EVALUATION
This section shows that fluid pipelines can be used to automatically
generate efficient cores with less pipeline stages than present in
code, and to show that Fluid cores are competitive against existing
RISC-V cores.

We do a competitive analysis between all the Fluid cores and
several non-Fluid RISC-V cores. For the Fluid RISC-V cores and
the available Non-Fluid RISC-V cores, we perform synthesis with
a commercial tool that has a topographical aware synthesis, and
report the time and area for each core. Figure 6 shows the resulting
pareto plot with the y-axes showing the normalized area against
c5+fwd, and the x-axes showing the delay in nanoseconds.

One observation is that Fluid RISC-V cores have approximately
similar delay-area trade-offs to Non-Fluid RISC-V cores. This is im-
portant because it shows that Fluid does not introduce additional
design overheads.

Another important observation is that automatically trans-
formed Fluid cores (c4 2-stage, c4+fwd 3-stage. . .) consistently save
area at the cost of pipeline frequency. This is the expected result,
but even more interesting is that the generated/transformed cores
are consistent with non-Fluid cores like VScale (3-stage) and Zero-
riscy (2-stage) RISC-V cores.

One wrong or incorrect observation would be to assume that
PICORV32 and VScale are the best because they are in the pareto
frontier. Nevertheless, this does not take into account CPI. For
Dhrystone, PICORV32 has a 4 CPI, while the c4 has a 2.5 CPI, if
the pareto plotted performance, it would show that c4 is ahead of
PICORV32.

An interesting observation is that one of the non Fluid RISC-
V core (RI5CY) seems to have a significant area and frequency
overhead. The area overhead is due to the extra prefetcher avail-
able in the model and a multiplier unit that does not exist in the
other cores. These two blocks account for approximately 25% of
the RI5CY area. The Zero-RISCY is a 2 stage pipeline version of
the RI5CY, this more area optimized core is very close to the Fluid
transformed c4 2-stage core.

Our RI5CY vs Zero-RISCY area synthesis results are consistent
with PULP [2] published results were the Zero-RISCY has approx-
imately 30% of the RI5CY area. In our case, Zero-RISCY has higher
frequency, but in the previously published results, the target fre-
quency was a conservative 100MHz for both cores. In this work,
we always target the maximum achievable frequency and then de-
crease 5% the target frequency to avoid complex timing overheads.
The same methodology is applied to all the cores.

Workshop on Computer Architecture Research with RISC-V (CARRV),
,

Haven Skinner, Rafael Trapani Possignolo, and Jose Renau

0

0.5

1

1.5

2

2 2.5 3 3.5 4 4.5 5

A
re

a

Delay (ns)

Non-Fluid
Fluid, no transform
Fluid, transformed

c4

c4+fwd

c5+fwd

VScale

Pico

RI5CY

c4+fwd (3 stage)

Zero RI5CY

c4 (3 stage)

c4 (2 stage)

Figure 6: Fluid cores are competitive against manually generated Non-Fluid RISC-V cores.

0%

50%

100%

150%

200%

250%

6-
st
ag

e
M

7

3-
st
ag

e
M

3

1-
st
ag

e
M

0

c6+fwd
ARM Cortex-M

Figure 7: Automatically transformed Fluid cores have simi-
lar performance as well tuned ARM Cortex-M cores.

One last interesting observation is that the delay of the c4 does
not change going from three to two stages. This means that the
merge from three to two did not change the critical path. Consid-
ering that Retiming (Figure 2a) allows developers to change the
timing of the pipeline automatically, the ability to merge and re-
balance may prove a useful addition to this tool.

Besides comparing against RISC-V cores, we also compare a
larger 6-stage Fluid RISC-V core (c6+fwd) and its automatically
generated shorter pipeline RISC-V cores against ARM Cortex-M
series.

To understand the automatically transformed results, we com-
pare against the ARM cores. Figure 7 shows the c6+fwd and the
automatically transformed 1-stage and 3-stage performance nor-
malized against the ARM Cortex-M series. The Cortex M7 outper-
forms the c6+fwd in 6-stage form, likely because its pipeline is sim-
ply more balanced. Nevertheless, as we collapse the designs the im-
balance is not as important, and the performance change between
the collapsed RISC-V and ARM core is lower.

5 CONCLUSION
In this paper we show how fluid pipelines can aid in a common
problem for hardware designers: sharing code between similar ar-
chitectures with different timing properties. This is possible be-
cause fluid pipelines separate the behavior of the system from its
timing, enabling pipeline transformations. In this paper we show
how pipeline transformations can be applied as part of the compi-
lation flow to remove pipeline stages, increasing the delay in order
to use less area. In our evaluation we show that the automatically
generated cores are comparable to similar cores implemented by
hand.

Fluid pipelines, a type of latency-insensitive system, attack a
scalability problem inherent with clock synchronous pipelines, de-
rived from the fact that a clock synchronous pipeline’s behavior
is closely tied with its timing attributes. This makes such systems
inherently brittle, as any change in timing, both in terms of critical
path and clock cycle latency, can have difficult-to-manage effects
on other parts of the system. These scalability issueswill only grow
worse and digital architectures continue to grow in size and com-
plexity.

Though developing with latency-insensitive systems is not
without its challenges, they provide a model for managing larger
systems by viewing its components in isolation, and provide a high-
level mechanism to control timing with pipeline transformations.
A fluid pipeline, which removes any implicit assumption about
completion order, can be viewed as a fully distributed, synthesiz-
able system.

ACKNOWLEDGMENTS
This work was supported in part by the National Science Foun-
dation under grants CNS-1059442-003, CNS-1318943-001, CCF-
1337278, and CCF-1514284. Any opinions, findings, and conclu-
sions or recommendations expressed herein are those of the au-
thors and do not necessarily reflect the views of the NSF.

Automating the Area-Delay Trade-off Problem

Workshop on Computer Architecture Research with RISC-V (CARRV),
,

REFERENCES
[1] [n. d.]. PicoRV32: A Size Optimized RISC-V CPU. https://github.com/

cliffordwolf/picorv32. ([n. d.]). Accessed: 2017-05-25.
[2] [n. d.]. PULP Platform: Parallel Ultra Low-Power Platform. http://www.

pulp-platform.org/. ([n. d.]). Accessed: 2017-11-20.
[3] [n. d.]. RI5CY: A Small, 4-stage RISC-V Core. https://github.com/pulp-platform/

riscv. ([n. d.]). Accessed: 2017-11-20.
[4] [n. d.]. VScale. https://github.com/ucb-bar/vscale. ([n. d.]). Accessed: 2017-4-4.
[5] [n. d.]. Zero-riscy: A Small, 2-stage Core derived from RI5CY. https://github.

com/pulp-platform/zero-riscy. ([n. d.]). Accessed: 2017-11-20.
[6] D.E. Bufistov, J. Cortadella, M. Galceran-Oms, J. Julvez, andM. Kishinevsky. 2009.

Retiming and recycling for elastic systems with early evaluation. In 46th Design
Automation Conference. 288–291.

[7] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. 2000. Performance
Analysis and Optimization of Latency Insensitive Systems. In Proceedings of
the 37th Design Automation Conference. ACM, New York, NY, USA, 361–367.
https://doi.org/10.1145/337292.337441

[8] J. Cortadella, M. Galceran-Oms, and M. Kishinevsky. 2010. Elastic Systems. In
Proceedings of the 8th ACM/IEEE Int. Conf. on Formal Methods and Models for
Codesign (MEMOCODE ’10). 149–158.

[9] J. Cortadella, M. Kishinevsky, and B. Grundmann. 2006. SELF: Specification and
Design of Synchronous Elastic Circuits. In Proceedings of the ACM/IEEE Interna-
tional Workshop on Timing Issues (TAU 06).

[10] Rafael T. Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. 2016. Flu-
idPipelines: Elastic Circuitry meets Out-of-Order Execution. In Computer Design
(ICCD), Proceedings of the 34th International Conference on.

[11] Rafael T. Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. 2016. Flu-
idPipelines: Elastic Circuitry without Throughput Penalty. In Logic Synthesis
(IWLS), Proceedings of the 2016 International Workshop on.

[12] Haven Skinner, Rafael Possignolo, and Jose Renau. 2017. Liam: An Actor Based
Programming Model for HDLs. International Conference on Formal Methods and
Models for System Design (2017).

[13] M. Vijayaraghavan and A. Arvind. 2009. Bounded Dataflow Networks and
Latency-Insensitive Circuits. In Proceedings of the 7th IEEE/ACM Int’l Conf. on
Formal Methods and Models for Codesign. IEEE Press, Piscataway, NJ, USA, 171–
180.

https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
http://www.pulp-platform.org/
http://www.pulp-platform.org/
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/ucb-bar/vscale
https://github.com/pulp-platform/zero-riscy
https://github.com/pulp-platform/zero-riscy
https://doi.org/10.1145/337292.337441

	Abstract
	1 Introduction
	2 Fluid Pipelines
	2.1 Pipeline Transformations

	3 Cliff CPUs
	4 Evaluation
	5 Conclusion
	References

